A numerical method for solving delay-fractional differential and integro-differential equations

Authors

  • A‎. ‎ ‎Askari-Hemmat Department of Applied Mathematics‎, ‎Faculty of Mathematics and Computer‎, ‎Shahid Bahonar University of Kerman‎, ‎Kerman‎, ‎Iran
  • E‎. Sokhanvar Department of Mathematics‎, ‎Faculty of Science and New Technologies‎, ‎Graduate‎ ‎University of Advanced Technology‎, ‎Kerman‎, ‎Iran
Abstract:

‎This article develops a direct method for solving numerically‎ ‎multi delay-fractional differential and integro-differential equations‎. ‎A Galerkin method based on Legendre polynomials is implemented for solving‎ ‎linear and nonlinear of equations‎. ‎The main characteristic behind this approach is that it reduces such problems to those of‎ ‎solving a system of algebraic equations‎. ‎A convergence analysis and an error estimation are also given‎. Numerical results with comparisons are given to confirm the reliability of the proposed method‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Fractional type of flatlet oblique multiwavelet for solving fractional differential and integro-differential equations

The construction of fractional type of flatlet biorthogonal multiwavelet system is investigated in this paper. We apply this system as basis functions to solve the fractional differential and integro-differential equations. Biorthogonality and high vanishing moments of this system are two major properties which lead to the good approximation for the solutions of the given problems. Some test pr...

full text

A Numerical Scheme for Solving Nonlinear Fractional Volterra Integro-Differential Equations

In this paper, a Bernoulli pseudo-spectral method for solving nonlinear fractional Volterra integro-differential equations is considered. First existence of a unique solution for the problem under study is proved. Then the Caputo fractional derivative and Riemman-Liouville fractional integral properties are employed to derive the new approximate formula for unknown function of the problem....

full text

A spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations

In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...

full text

A Meshless Method for Numerical Solution of Fractional Differential Equations

In this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. We approximate the exact solution by use of Radial Basis Function(RBF) collocation method. This techniqueplays an important role to reduce a fractional dierential equation to a system of equations. The numerical results demonstrate the accuracy and ability of this me...

full text

A Numerical Method For Solving Ricatti Differential Equations

By adding a suitable real function on both sides of the quadratic Riccati differential equation, we propose a weighted type of Adams-Bashforth rules for solving it, in which moments are used instead of the constant coefficients of Adams-Bashforth rules. Numerical results reveal that the proposed method is efficient and can be applied for other nonlinear problems.

full text

The Legendre Wavelet Method for Solving Singular Integro-differential Equations

In this paper, we present Legendre wavelet method to obtain numerical solution of a singular integro-differential equation. The singularity is assumed to be of the Cauchy type. The numerical results obtained by the present method compare favorably with those obtained by various Galerkin methods earlier in the literature.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 1

pages  11- 24

publication date 2017-05-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023